Heparanase as mediator of angiogenesis: mode of action.

نویسندگان

  • M Elkin
  • N Ilan
  • R Ishai-Michaeli
  • Y Friedmann
  • O Papo
  • I Pecker
  • I Vlodavsky
چکیده

Extracellular matrix (ECM) and basement membranes (BMs) present a physical barrier that requires enzymatic degradation during endothelial cell (EC) sprouting at early stages of angiogenesis. These multimolecular structures also serve as a storage depot for heparin-binding angiogenic factors. Heparan sulfate proteoglycans (HSPGs) are responsible for the self-assembly and integrity of the ECM and BM structure, as well as for sequestration of growth and differentiation factors. Recently, we reported the cloning of heparanase, an endo-β-Dglucuronidase degrading heparan sulfate (HS), and provided direct evidence for its role in tumor metastasis. We now demonstrate that heparanase is intimately involved in angiogenesis and elucidate its mode of action. Apart from its direct involvement in ECM degradation and EC migration (vascular sprouting), heparanase releases active basic fibroblast growth factor (bFGF) from the subendothelial ECM, as well as bFGF-stimulating HS degradation fragments from the EC surface. Interestingly, ECM-derived HS fragments induced little or no potentiation of the growth-promoting activity of bFGF. The angiogenic effect of heparanase was demonstrated in vivo (via the Matrigel plug assay) by showing a threeto fourfold increase in neovascularization induced by murine T-lymphoma cells after stable transfection with the heparanase gene. Increased tissue vascularity was also observed in a mouse wound-healing model in response to topical administration of recombinant heparanase. Immunohistochemical staining of human colon carcinoma tissue revealed a high expression of the heparanase protein in the endothelium of sprouting capillaries and small vessels, but not of mature quiescent blood vessels. The ability of heparanase to promote tumor angiogenesis and its involvement in tumor metastasis make it a promising target for cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Therapy: Preclinical SST0001, a Chemically Modified Heparin, Inhibits Myeloma Growth and Angiogenesis via Disruption of the Heparanase/Syndecan-1 Axis

Purpose: Heparanase promotes myeloma growth, dissemination, and angiogenesis through modulation of the tumor microenvironment, thus highlighting the potential of therapeutically targeting this enzyme. SST0001, a nonanticoagulant heparin with antiheparanase activity, was examined for its inhibition of myeloma tumor growth in vivo and for its mechanism of action. Experimental Design: The ability ...

متن کامل

Differential role of platelet granular mediators in angiogenesis.

OBJECTIVES Platelets contain numerous substances regulating angiogenic response. However, the regulatory role of platelets in blood vessel development remains to be elucidated. We investigated the comprehensive effect of platelets as a cellular system on angiogenesis. METHODS The following approaches were applied: (a) in vitro-aortic ring assay and chemotaxis assay; (b) in vivo-injection of p...

متن کامل

Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis.

Heparanase is an endoglycosidase which cleaves heparan sulfate (HS) and hence participates in degradation and remodeling of the extracellular matrix (ECM). Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors from the ECM and thereby induces an angiogenic r...

متن کامل

SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis.

PURPOSE Heparanase promotes myeloma growth, dissemination, and angiogenesis through modulation of the tumor microenvironment, thus highlighting the potential of therapeutically targeting this enzyme. SST0001, a nonanticoagulant heparin with antiheparanase activity, was examined for its inhibition of myeloma tumor growth in vivo and for its mechanism of action. EXPERIMENTAL DESIGN The ability ...

متن کامل

Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase.

Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 2001